ENDOCRINOLOGY

The Integration of Artificial Intelligence in Hormone
Analysis: Transforming Diagnostic Precision and
Personalized Endocrine Care

ABSTRACT

Traditional hormone analysis methods are often limited by single-point measurements, assay vari-
ability, and biological fluctuations that reduce diagnostic precision. Artificial intelligence (Al) offers
powerful tools to address these limitations by recognizing complex hormone patterns, predict-
ing physiological events, and guiding personalized treatment strategies. This review explores how
Al enhances endocrine diagnostics across metabolic, reproductive, thyroid, and adrenal hormone
domains. By integrating vast temporal datasets and interpreting subtle variations often missed by
conventional methods, Al facilitates earlier detection of disorders such as diabetes, polycystic ovary
syndrome (PCOS), thyroid dysfunction, and adrenal abnormalities. It also supports dose optimization
and real-time monitoring. Artificial intelligence—driven tools are evolving to model multi-hormone
systems, offering a holistic understanding of endocrine function and aiding clinical decision-making.
The integration of Al into hormone analysis signifies a paradigm shift toward proactive, precise, and
personalized endocrine care.
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Introduction

Hormones are critical biological messengers that orchestrate physiological processes, includ-
ing metabolism, growth, reproduction, and stress response. Precise hormone measurement
and interpretation are essential for diagnosing endocrine disorders, monitoring treatment,
and assessing overall systemic health. The growing prevalence of endocrine disorders has
amplified the importance of hormonal analysis. Traditional methods often fail to capture
the subtle variations and complex interactions that characterize these conditions.'? Artificial
intelligence (Al) offers unprecedented opportunities to analyze sophisticated patterns with
enhanced precision and reliability.>*

Artificial intelligence technologies have revolutionized medical diagnostics through
advanced pattern recognition in hormonal data. Machine learning (ML) algorithms, particu-
larly deep learning, excel at identifying subtle patterns within complex biological datasets.
These systems process vast temporal data, integrate multiple parameters, and detect pat-
terns imperceptible to human observers. Recent advances enable sophisticated models to
analyze continuous hormone monitoring, interpret feedback mechanisms, and predict hor-
monal dysregulation before clinical manifestation.

Despite Al's transformative potential, existing studies remain fragmented across subdomains.
This review consolidates advances in Al applications for hormone quantification and predictive
analytics for endocrine dysfunction. It evaluates the clinical translatability of these technolo-
gies in endocrine care. By synthesizing interdisciplinary insights, the authors chart a roadmap
for integrating Al into hormone analysis, advancing precision medicine tailored to individual
patient profiles. This integration promises to overcome traditional diagnostic limitations,
enabling more accurate diagnosis and personalized management of endocrine disorders.

Complications in Conventional Hormone Analysis and Pattern Interpretation
Methodological Limitations

Single-Point Measurements vs. Continuous Fluctuations: Conventional hormone analysis
faces significant methodological limitations by relying on single-point measurements rather
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than capturing the complex temporal dynamics of hormone
secretion. This approach fails to account for natural variations that
significantly impact interpretation, as demonstrated by Collier et al®
who found that healthy men’s morning testosterone levels fluctuate
approximately 19% between days, requiring a substantial 52%
change between measurements to indicate clinical significance.
Many hormones, including growth hormone (GH), are secreted in
episodic pulses, meaning random sampling may coincidentally
capture peaks or troughs, leading to potentially misleading results.
Recent technological advances, exemplified by Bhake et al’s®
wearable microdialysis device capable of sampling free cortisol every
10-20 minutes over extended periods, have revealed consistent
circadian patterns and stress-related spikes entirely missed by
traditional testing methods, underscoring how richer temporal data
collection provides more accurate hormone profiles and highlighting
the critical need for continuous monitoring approaches in both
research and clinical settings.®

Assay Variability and Analytical Errors: Hormone assays themselves
introduce variability and inaccuracies. Immunoassay-based
techniques, the workhorse of hormone testing, often suffer from
limited specificity and calibration differences. Immunoassays may
cross-react with structurally similar molecules or background
proteins at low hormone concentrations, yielding erroneous results.
For instance, Ohlsson et al” compared standard immunoassays to
mass spectrometry (MS) for measuring estradiol in men and
postmenopausal women. Immunoassays showed only moderate
correlation with MS and were prone to interference. C-reactive
protein levels correlated with estradiol readings by immunoassay but
not by MS, suggesting that the immunoassay was detecting
nonspecific signals. The authors concluded that many prior studies
linking estradiol to clinical outcomes may need revaluation due to
inaccuracies in immunoassays.” Lack of assay standardization is a
related issue: different laboratories and kit manufacturers use varying
antibodies and reference calibrators. As a result, the same patient’s

MAIN POINTS

- Artificial intelligence addresses core challenges in hormone
diagnostics, such as assay variability, circadian fluctuation, and
inter-individual variability by modeling complex patterns and
enabling continuous hormone monitoring.

- Artificial intelligence improves the accuracy of diagnosing
endocrine disorders, including diabetes, PCOS, thyroid dysfunc-
tion, and Cushing’s syndrome, by analyzing multivariate data
and temporal hormone fluctuations.

- Artificial intelligence supports individualized therapy, such as
levothyroxine and insulin dosing, through predictive model-
ing and decision-tree algorithms based on dynamic hormone
profiles.

« Integration of artificial intelligence with biosensors and wear-
ables enables real-time hormone tracking and prediction of
physiological states like ovulation or stress responses, enhanc-
ing preventive care.

- Artificial intelligence is advancing beyond single-axis analysis
to multi-system integration, facilitating the development of
“digital twins” that simulate comprehensive endocrine function
and guide holistic management strategies.
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sample can yield different values across labs, and “normal ranges” are
assay-dependent. A 2023 analysis highlighted divergent reference
intervals between hormone assays, warning that such discrepancies
could impact the management of endocrine disorders.?

Sample Handling and Stability: Certain hormones are chemically
unstable in blood and can degrade or change before analysis. A
prime example is adrenocorticotropic hormone (ACTH), a peptide
prone to rapid proteolysis. Fraissinet et al® demonstrated that ACTH
levels drop markedly unless samples are kept chilled and promptly
processed. In whole blood at room temperature, ACTH became
unreliable after just 2 hours, whereas cooling at 4°C preserved
stability for up to 8 hours.

The timing of sample collection is another critical factor. Because
of circadian fluctuations, drawing at inconsistent times introduces
noise. Thyroid-stimulating hormone (TSH) varies by up to 40-50%
over a day in a given individual. If 1 sample is taken at 8 AM and the
next in the afternoon, a difference in TSH might reflect normal circa-
dian decline rather than a true change in thyroid function.™

Physiological Noise and Biological Rhythms: The measurement of
endocrine biomarkers presents significant challenges for clinical
interpretation due to inherent biological variability. Cortisol
exemplifies this complexity through its circadian rhythmicity,
superimposed ultradian pulsatility, and acute responsiveness to
psychological and physiological stressors. In healthy males, research
demonstrates that the predominant source of variance in diurnal
cortisol secretion derives from intra-individual fluctuations rather
than consistent patterns." Compounding these temporal dynamics,
substantial inter-individual variability further complicates hormone
assessment, with baseline concentrations often differing by an order
of magnitude among healthy subjects of comparable demographics.
Epidemiological data reveal 5- to 10-fold differences in hormone
levels within healthy age- and sex-matched populations, challenging
the utility of standardized reference intervals. This heterogeneity
renders population means particularly problematic for individual
assessment, as noted in 1 investigation where “remarkably few
individuals showed the average” hormonal response during
standardized stress testing.'? The confluence of episodic secretion
patterns, circadian oscillations, stimulus-dependent fluctuations,
and pronounced inter-subject variability fundamentally constrains
the diagnostic precision and reliability of isolated hormone
measurements in clinical practice.

Diagnostic Challenges in Hormone Pattern Analysis

Inter-Individual Variation and Static Reference Ranges: The
interpretation of hormonal measurements against conventional
reference intervals poses significant diagnostic challenges due to
inherent biological variability. Standard laboratory reference ranges,
typically derived from population-based sampling, exhibit broad
distributions that may inadequately reflect individual physiological
states. This limitation stems from the concept of personalized
homeostatic set points, wherein values within population-defined
normal limits may represent pathological deviations for specific
individuals. Collier et al®* demonstrated this phenomenon using
testosterone measurements, observing that reference intervals were
“marginally useful” clinically—a 52% reduction in an individual’s
testosterone concentration could still fall within the reference range,
potentially obscuring clinically significant alterations. This
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observation exemplifies the low index of individuality characteristic
of many endocrine parameters, where intra-individual variance is
proportionally small compared to inter-individual variance,
diminishing the diagnostic utility of population-derived reference
intervals for monitoring individual patients. Physiological life stages
and comorbid conditions further complicate the interpretation of
hormonal measurements. For instance, elevated insulin-like growth
factor 1 (IGF-1) concentrations may suggest acromegaly, yet IGF-1
exhibits physiologically increased levels during puberty and
pregnancy, while demonstrating suppression in states of malnutrition
or uncontrolled diabetes mellitus.™

False Positives and Negatives in Lab Results: Endocrine diagnostics
are significantly compromised by false-positive and false-negative
results, with analytical interferences representing the predominant
source of error. Macromolecular hormone complexes exemplify this
phenomenon; these biologically inactive hormone aggregates
produce spurious elevations in immunoassay measurements.
Macroprolactin—a high-molecular-weight complex of prolactin
bound to immunoglobulin G—constitutes a substantial fraction of
total immunoreactive prolactin in certain individuals. Despite
detection as “elevated prolactin” in standard immunoassays,
macroprolactin lacks biological activity, resulting in patients without
clinical manifestations of hyperprolactinemia. Epidemiological
investigations have demonstrated that macroprolactin accounts for
15-26% of cases of biochemical hyperprolactinemia, representing
misclassification rather than pathological hypersecretion. When
unrecognized, this interference leads to erroneous diagnosis of
prolactinoma and subsequent unnecessary therapeutic
interventions.  Paradoxically, extremely elevated hormone
concentrations may generate false-negative results through the
“hook effect” phenomenon. In 2-site immunometric assays, excessive
analyte concentrations can simultaneously saturate both capture
and signal antibodies, preventing sandwich formation and yielding
paradoxically low measurements. Haddad et al"® documented this
phenomenon in patients with prolactin-secreting macroadenomas,
where serum prolactin concentrations exceeding 60 000 nanograms
per milliliter saturated assay systems, producing deceptively normal
results.” Exogenous biotin supplementation—increasingly prevalent
for purported dermatological benefits—represents an emerging
analytical interference. High-dose biotin disrupts the biotin-
streptavidin interaction, which is fundamental to many immunoassay
platforms. Consequently, thyroid function tests in biotin-consuming
individuals may present a biochemical pattern mimicking
hyperthyroidism (artificially suppressed TSH and elevated thyroxine)
despite clinical euthyroidism.™

Clinical Implications for Patient Management: The clinical
implications of hormonal assay limitations extend beyond laboratory
concerns to directly impact patient management and outcomes.
Diagnostic uncertainty resulting from analytical inaccuracies may
precipitate either delayed identification of endocrinopathies or

erroneous diagnoses, consequently leading to inappropriate
therapeutic interventions. For example, patients may be
inappropriately committed to lifelong levothyroxine (LT4)

supplementation based on falsely elevated TSH measurements or
subjected to unnecessary pharmacological therapeutic intervention
following misinterpretation of macroprolactinemia as a prolactin-
secreting pituitary adenoma. Conversely, individuals with true
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adrenal insufficiency may be inappropriately reassured by
indeterminate cortisol measurements, subsequently encountering
potentially life-threatening adrenal crises. These analytical limitations
similarly compromise therapeutic monitoring; significant day-to-day
variations in TSH concentrations challenge optimal titration of
hormone replacement therapies in hypothyroidism. In the context of
endocrine neoplasia, the inherent variability in hormonal tumor
markers (including cortisol and catecholamines) necessitates
longitudinal trend analysis rather than isolated measurements for
accurate clinical decision-making.”

In response to these constraints, Al applications have emerged as
innovative solutions for enhancing the reliability and precision of
hormonal analysis. These computational methodologies employ
sophisticated algorithms to interpret complex patterns within multi-
variate datasets that might otherwise be overlooked by conventional
analysis. Artificial intelligence platforms demonstrate the capacity
for more accurate prediction of dynamic hormone concentrations,
identifying subtle pattern abnormalities beyond human analytical
capabilities, and providing decision support for individualized treat-
ment strategies. This integration of computational intelligence into
endocrine diagnostics establishes a foundation for more precise, effi-
cient, and personalized patient management, effectively overcoming
many of the traditional limitations of conventional hormonal testing
methodologies.

Artificial Intelligence Technologies for Hormone Pattern Analysis

Artificial Intelligence in Metabolic Hormone Pattern Analysis:
Artificial intelligence has made significant inroads into metabolic
hormone analysis, particularly in recognizing patterns of insulin and
glucose for the management of diabetes. Continuous glucose
monitors generate high-frequency data that Al algorithms can
analyze for trends beyond simple averages. For example, Chan et al*
developed a ML framework to identify distinct patterns of blood
glucose fluctuations from continuous monitoring in individuals with
type 1 diabetes. The system extracted 6 recurrent glucose profiles
using time-series clustering and identified that patients could be
grouped into 4 phenotypic clusters, characterized by differing
hemoglobin A1lc levels and time-in-range outcomes.”™ Similarly, Al
has been applied to predictive modeling: a recent study used features
of the glucose curve during oral glucose tolerance tests to predict
underlying metabolic defects. By analyzing the shape of glucose
response curves, a ML model could accurately distinguish individuals
with predominant muscle insulin resistance, beta-cell dysfunction, or
impaired incretin response (AUC 88-95%). These results surpass
traditional indices and suggest that Al pattern analysis of glucose
dynamics can unmask the heterogeneity of metabolic syndrome and
type 2 diabetes subtypes.'®

Beyond glucose and insulin, Al techniques are being explored for
appetite-regulating hormones such as leptin and ghrelin, which play
roles in obesity and metabolic syndrome. Machine learning can inte-
grate such hormonal cycles with clinical data to improve weight man-
agement strategies. In 1 study, researchers collected postprandial
leptin and ghrelin dynamics along with other biomarkers in obese
patients undergoing therapy. Using these features, they trained a pre-
dictive model for weight loss success on an appetite suppressant. The
resulting model achieved about 80% accuracy in predicting 3-month
weight reduction outcomes. Notably, it outperformed models relying
solely on baseline metrics, such as body mass index, highlighting that
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incorporating hormone pattern features added predictive power."”
Such an approach could help clinicians identify which patients are
likely to respond to a given diet or pharmacotherapy by recogniz-
ing hormonal pattern signatures of treatment responsiveness. The
integration of these appetite-regulating hormones into predictive
frameworks represents a paradigm shift in metabolic health moni-
toring. Ghrelin, which exhibits characteristic peaks before meals
following habitual feeding patterns, and leptin, which interact with
circadian-metabolic disruptions commonly observed in obesity,'®?'
are now being incorporated into sophisticated algorithms designed
to forecast blood glucose trajectories and preempt dysglycemic epi-
sodes. This evolving field represents a convergence of endocrinology,
computational biology, and personalized medicine, with Al-designed
compounds already showing success in targeting multiple receptors
involved in appetite and weight control, offering unprecedented
opportunities for precision-based metabolic health interventions
and personalized obesity management strategies.

Artificial Intelligence in Reproductive Hormone Pattern Analysis:
Reproductive endocrinology has leveraged Al to analyze the cyclical
patterns of hormones that regulate menstrual cycles, ovulation, and
fertility. Menstrual cycle tracking apps and wearables generate
longitudinal data, including cycle lengths, basal body temperature,
and changes in heart rate, that reflect underlying hormonal rhythms.
Machine learning models have been designed to classify cycle
phases and predict ovulation by detecting subtle physiologic pattern
shifts. For example, a recent computational study utilized a neural
network to analyze resting heart rate patterns throughout the cycle
and successfully identified the luteal phase, inferring ovulation
timing under free-living conditions.?? This demonstrates how Al can
non-invasively interpret signals downstream of hormones (e.g.,
estrogen’s effect on basal heart rate) to flag cycle irregularities or
anovulatory cycles. On the biochemical side, Al is directly used on
hormone measurements for ovulation prediction. Li et al® developed
ML models to pinpoint the day of ovulation in women undergoing
fertility treatment by analyzing serial hormone levels. Using
preovulatory trends in luteinizing hormone (LH), estradiol, and
especially progesterone (P4), their algorithm predicted ovulation
within a 24-hour window with up to 85% accuracy on a validation set.
Interestingly, the model’s interpretability analysis revealed that a rise
in serum P4 (>0.65 ng/mL) was the strongest predictor of imminent
ovulation, surpassing even LH.2 This insight, discovered through the
ML evaluation of hormone patterns, could influence clinical practice
by suggesting progesterone as a reliable marker for timing
interventions (like insemination or egg retrieval) when LH is
equivocal. Artificial intelligence-based ovulation forecasting tools
are thus enhancing precision in fertility planning and assisted
reproduction.

Artificial intelligence has also shown promise in detecting menstrual
irregularities and reproductive disorders from hormone patterns.
Polycystic ovary syndrome (PCOS), a common disorder character-
ized by chronic anovulation and hormonal imbalances, is an area of
active Al research. Traditional diagnosis relies on a combination of
clinical signs and static lab values; however, ML can better handle the
complexity of PCOS presentation by integrating multiple hormonal
and metabolic indicators. In a 2024 study, Zad et al** applied several
ML algorithms to electronic health record data of women at risk for
PCOS. Their best model, a neural network combining patterns in fol-
licle-stimulating hormone, LH, estradiol, and sex hormone-binding
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globulin, achieved an area under the ROC curve of ~85% for predict-
ing PCOS before a clinical diagnosis was made. The model learned
that certain hormone constellations (e.g., an elevated LH: FSH ratio
alongside high androgen levels) strongly indicated PCOS, whereas
features like prior pregnancy (gravidity) weighed against it.?* By rec-
ognizing these patterns, the Al could flag probable PCOS cases that
clinicians had not yet diagnosed, facilitating earlier intervention.
Beyond PCOS, researchers are exploring Al for other reproductive
endocrinopathies. For instance, ML has been used to interpret subtle
variations in menstrual cycle length and hormone profiles to pre-
dict conditions such as luteal phase defect, and even to differentiate
types of ovulatory dysfunction. This augments clinicians’ ability to
diagnose disorders like PCOS or amenorrhea and to personalize fer-
tility management (e.g., pinpointing the fertile window or optimizing
hormone therapy in menstrual disorders).

Artificial Intelligence in Thyroid Hormone Pattern Analysis: Thyroid
function is traditionally assessed through periodic blood tests (TSH,
T3 [Triiodothyronine], T4 [Thyroxine]), but subtle patterns in these
values over time or in relation to other biomarkers may go unnoticed.
Artificial intelligence systems have been deployed to enhance the
detection of thyroid dysfunction by mining routine laboratory data
for patterns suggestive of hypo- or hyperthyroidism. For instance, Hu
M et al utilized electronic health record data from thousands of
patients to train ML classifiers for thyroid disorders. Their best model
distinguished hyperthyroid and hypothyroid patients from euthyroid
controls with high accuracy (AUROC 93.8% for hyperthyroidism,
90.9% for hypothyroidism).?* Using a wide array of laboratory tests,
including serum creatinine, mean corpuscular volume (MCV), and
total cholesterol for hyperthyroidism, as well as serum creatinine,
lactate dehydrogenase (LDH), and total cholesterol for
hypothyroidism, is highly relevant for clinical endocrinologists.
Thyroid dysfunction significantly alters renal function, with serum
creatinine levels reflecting these changes. In hypothyroid patients,
treatment reduces serum creatinine and improves estimated
glomerular filtration rate (eGFR), indicating renal recovery.
Hyperthyroid patients show increased serum creatinine and reduced
eGFR after treatment.?® In hypothyroidism, total cholesterol and LDL
levels increase due to reduced clearance of low-density lipoprotein
(LDL). High-density lipoprotein may remain normal or increase due
to decreased CETP and hepatic lipase activity. In contrast,
hyperthyroidism lowers total cholesterol, LDL, and apo B due to
increased LDL receptor activity. High-density lipoprotein levels may
decrease slightly in hyperthyroidism from enhanced lipid
metabolism.?” In hyperthyroidism, a mild decrease in hemoglobin
and MCV is common, even in the absence of iron deficiency or
anemia. MCV typically rises after treatment, indicating that low MCV
is a consistent feature of active hyperthyroidism. Excess thyroxine
alone does not replicate this MCV change. Autoimmune markers,
such as thyroid microsomal and parietal cell antibodies, are frequently
present.® The study found that serum LDH activity significantly
increased in subclinical and clinical hypothyroidism (P < .001)
compared to euthyroid individuals. Despite elevated LDH in
hypothyroidism, there was no significant correlation between LDH
and T3, T4, or TSH levels. Lactate dehydrogenase alterations may
reflect metabolic disturbances, but are not reliable markers of thyroid
dysfunction.”® These correlations make clinical sense (eg.,
hypothyroidism often raises cholesterol levels), and the Al effectively
“learned” these relationships from the data. The authors concluded
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that ML could serve as a screening tool, scanning routine lab results
to catch undiagnosed thyroid disorders in primary care.

Another key application of Al in thyroidology is optimizing LT4 ther-
apy for patients with hypothyroidism. Achieving the correct LT4 dose
after thyroidectomy or in chronic thyroiditis can be a trial-and-error
process spanning months. Chen et al* created a ML decision tree to
recommend LT4 dose adjustments after thyroidectomy. The model
was trained on dose titration data from 320 patients, incorporating
inputs such as current dose, TSH level, and patient characteristics. In
validation, the Al's dose adjustment recommendation was within 1
standard dose increment (12.5 ug) of the optimal adjustmentin ~75%
of cases. This accuracy was on par with that of experienced endocri-
nologists and notably better than that of inexperienced providers or
simple weight-based formulas. Essentially, the algorithm can predict
that a patient with a very high TSH and a specific body weight might
require, for example, an additional 25 pg. In contrast, another patient
with a mild TSH elevation might need only +12.5 pg.*® By following
the decision tree’s guidance, clinicians unfamiliar with complex thy-
roid cases could reach euthyroidism faster, reducing the symptom-
atic period for patients. Artificial intelligence-driven dosing tools like
this could be integrated into electronic prescribing systems, provid-
ing personalized dose suggestions after each lab test. While physi-
cians would remain in control, such tools offer a data-driven starting
point for dose decisions. In the future, combining more data, such as
genetic polymorphisms that affect thyroid hormone absorption or
deiodination, could further refine Al dosing recommendations.

Artificial Intelligence in Pituitary and Adrenal Hormone Pattern
Analysis: The pituitary and adrenal glands orchestrate hormone
cascades with complex temporal patterns, and Al is being leveraged
to model these for improved disease management. A prime example
is Cushing’s syndrome, a condition of chronic cortisol excess often
due to an ACTH-secreting pituitary tumor. Diagnosing Cushing’s
syndrome can be challenging, requiring the integration of clinical
features with multiple hormone tests (e.g., cortisol rhythms,
dexamethasone suppression tests). Artificial intelligence-based
decision systems are emerging to assist in this process. Recent work
by Kalender et al explored various ML algorithms to classify Cushing’s
syndrome using retrospective clinical and biochemical data. Their
best model, a Random Forest classifier, distinguished patients with
Cushing’s syndrome from those without it with ~92% accuracy
(sensitivity of ~97%, specificity of ~87%). Moreover, the model could
subclassify the type of Cushing’s (e.g., Cushing’s disease vs. ectopic
ACTH vs. adrenal tumor) with high per-class precision by recognizing
hormone pattern signatures associated with each subtype.®' The Al
effectively learned these distinctions. Such a tool could alert
endocrinologists when a patient’s constellation of lab results
indicates Cushing’s syndrome, or even suggest the likely subtype,
thereby expediting confirmatory testing and treatment. Addison’s
disease (primary adrenal insufficiency), conversely, involves cortisol
deficiency and can be life-threatening if missed. Although no large
published human studies have yet been conducted, analogous ML
models are being developed to screen for Addison’s disease by
analyzing routine laboratory patterns (e.g., concurrent hyponatremia,
hyperkalemia, and elevated ACTH levels). The vision is an Al system
that can raise an alarm for possible Addison’s disease when a
hospitalized patient’s labs and symptoms follow a pattern exhibited
by past Addison'’s cases, thus prompting a timely ACTH stimulation
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test. In veterinary medicine, such models already assist in identifying
Addison'’s in dogs, and translation to human medicine is anticipated
as data accrues.®

Al has also begun to tackle GH secretion patterns in pediatric and
adult populations. Diagnosing growth disorders, such as GH defi-
ciency, typically requires stimulation tests and serial sampling to
observe the hormone’s dynamic response. Researchers have been
testing Al models on alternative datasets to reduce reliance on these
labour-intensive tests. One innovative approach analyzed transcrip-
tomic profiles (gene expression of dozens of genes) from a single
blood draw and used ML to predict GH deficiency in children. In
a pilot study, this method achieved an AUC of 0.97 in distinguish-
ing GH-deficient children from those with idiopathic short stature.
Essentially, the Al identified a gene expression “signature” in periph-
eral blood that correlates with inadequate GH secretion, providing
a proxy for the standard GH stimulation test. Artificial intelligence
can interpret multi-sample GH testing data more effectively than
manual methods. For example, in acromegaly (GH excess), Al is being
explored to detect the disease earlier by recognizing subtle pattern
deviations in IGF-1 trends and symptom evolution.® Additionally, for
patients on hydrocortisone or GH replacement, Al could potentially
optimize dosing schedules by modeling the circadian pattern of cor-
tisol or the desired pulsatility of GH and suggesting dose timing that
mimics physiological rhythms. Although such advanced applications
are still largely conceptual, early studies in Cushing’s syndrome and
GH disorders show that Al can enhance the authors’ ability to deci-
pher pituitary and adrenal hormone profiles. By doing so, it enhances
the detection of disorders such as Cushing’s syndrome, Addison'’s dis-
ease, and GH deficiencies, and paves the way for more physiologic
management of these conditions.

Multi-System Artificial Intelligence Integration in Hormone Pattern
Analysis: A frontier of endocrine Al research is the integration of
multiple hormonal systems into unified models. Many endocrine
disorders have systemic impacts or overlapping features (e.g., PCOS
involves reproductive hormones and metabolic insulin resistance;
Cushing’s syndrome affects both adrenal and metabolic parameters).
Artificial intelligence models that concurrently analyze patterns
across endocrine axes aim to capture this complexity, thereby
improving diagnostic accuracy and guiding holistic treatment
strategies. One illustrative case is PCOS, which could be considered a
multi-system disorder. The ML model for PCOS mentioned earlier
combined ovarian hormone levels with metabolic indicators like
obesity, rather than evaluating each in isolation.?* By doing so, it
could more reliably detect the condition than single-factor criteria,
since PCOS manifests as a constellation of interrelated patterns
(androgen excess, irregular gonadotropin levels, insulin resistance).
This kind of integrated approach is also extending to other scenarios.
Researchers are experimenting with Al that takes in a full panel of
hormone results (thyroid, adrenal, gonadal, pancreatic) and clinical
features to produce differential diagnoses. For instance, in a patient
with fatigue and weight changes, such a model might simultaneously
consider thyroid function, cortisol pattern, and sex hormones to
determine if it's hypothyroidism, adrenal insufficiency, or perhaps
perimenopause, with each diagnosis defined by a unique multi-
hormone signature. Early evidence suggests that multi-input models
can improve classification in complex cases: a meta-analysis of ML
studies for central precocious puberty (an endocrine condition
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requiring both brain and ovarian hormone evaluation) found that
models combining clinical data, laboratory hormone levels, and
imaging data achieved a pooled accuracy with AUC ~0.90 in
diagnosis.>* This underscores that integrating diverse data sources
(hormonal and otherwise) gives a more complete picture and better
performance thanany single source alone. “Digital twin” forendocrine
health: a composite Al simulation of a patient’s endocrine network,
continuously updated with multi-hormone data, that can test how a
change (such as a new medication or lifestyle change) might affect
the entire hormonal balance. While still experimental, such models
have been trialed in metabolic disease and have shown improved
outcomes in tailoring treatments.®

Artificial Intelligence Solutions for Single-Point Measurement
Limitations

Al offers solutions by enabling continuous monitoring, predictive
modeling, and real-time analytics that transcend static snapshots.
For example, wearable biosensors paired with Al can now continu-
ously track hormone-related biomarkers, providing richer datasets
than those obtained through periodic blood draws. In the diabetes
domain, continuous glucose monitors linked with Al-driven insulin
pumps (a “closed-loop” system) demonstrate the power of real-time
data integration. These systems significantly improve glycemic con-
trol compared to intermittent fingersticks.*® Analogously, emerging
Al-enhanced wearables for stress and sleep hormones (like cortisol
and melatonin) allow noninvasive continuous hormone monitoring,
offering real-time insights beyond what a single lab cortisol level can
show.>’

This study demonstrated that by inputting a patient’s age, cycle day,
and a couple of hormone readings, an Al algorithm could pinpoint
the person’s position in the menstrual cycle with 95% confidence.®

Similarly, an innovative pilot study in dancers demonstrated that Al
modeling of menstrual hormone variation, using only 2 blood samples
per cycle, provided a “dynamic and comprehensive picture” of each
dancer’'s hormone network and detected subtle hormonal disrup-
tions well before traditional symptoms or cycle changes appeared.®®
For instance, Al-driven platforms have been utilized to personal-
ize hormone therapy dosing in real-time. One study reported an Al
algorithm that adjusted menopausal hormone replacement dosages
based on continuous symptom and biomarker tracking, resulting in
improved efficacy and patient satisfaction.®

Reducing Assay Variability Through Artificial Intelligence

Another challenge in hormone analysis is assay variability, where
results can differ due to changes in reagent lot, calibration drift,
operator technique, or instrument error. Such variability under-
mines the trustworthiness of serial hormone measurements.
Artificial intelligence-based calibration and quality control tools
are now helping to stabilize this inconsistency. For example, labo-
ratories are implementing Al-driven quality control systems that
continuously learn from patient data to detect analytical errors
or drifts in real-time. In a 2024 study, Dong et al*' introduced an
Al-powered patient-based real-time quality control (AI-PBRTQC) for
laboratory assays, including hormones such as thyroxine and anti-
Miillerian hormone, and found it to be more efficient in identifying
quality risks than traditional quality control methods. This type of
intelligent QC can promptly identify an assay calibration issue or
reagent degradation, prompting corrective action before patients
are affected. The AI-PBRTQC approach maintained high sensitivity
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while minimizing false alarms, indicating a robust performance in
stabilizing assay outputs.*’ Figure 1).

Al algorithms are also being applied to calibrate assays and miti-
gate interference. For instance, an Al-based “delta check” method
developed by Zhou et al.*> used deep learning to compare current
and prior results, effectively catching specimen mix-ups that conven-
tional delta checks missed.”®* Additionally, Al can integrate data from
multiple assays to cross-verify hormone levels. By combining outputs
from different platforms (e.g., an immunoassay and a MS result for
the same sample), ML models can identify outliers or apply bias cor-
rections, thus harmonizing measurements across methods. In sum-
mary, Al-based calibration models and real-time QC mechanisms
are reducing assay variability by detecting errors early, adjusting for
shifts, and ensuring that hormone measurements remain accurate
and comparable over time.*"* These improvements enhance the reli-
ability of hormone tests, which is crucial for longitudinal monitoring
and nuanced dosing decisions in clinical practice.

Integrating Artificial Intelligence with Advanced Assay
Technologies

Mass spectrometry can simultaneously quantify multiple hormones
and metabolites with high accuracy, but it yields complex datasets.
Machine learning is increasingly used to interpret MS-based profiles
and extract clinically useful information. In thyroid disease research,
Che et al** showed that combining MS-based multi-omics (proteomic
and metabolomic data) with Al can reveal patterns not evident from
single analytes. In their review, they note that ML algorithms, such
as random forests and support vector machines, applied to large
omics datasets enable more accurate classification of thyroid condi-
tions by integrating subtle biomarker combinations.* This type of
multi-omics integration enables an Al to weigh dozens of hormonal
and metabolic markers simultaneously, rather than clinicians inter-
preting each hormone individually. The result is a more holistic and
precise assessment, for instance, differentiating thyroid carcinoma
from benign nodules by a composite “fingerprint” of hormone levels
and protein markers. Similarly, in adrenal endocrinology, research-
ers have used ML on steroid hormone panels (measured by liquid
chromatography-MS) to improve the detection of subclinical cortisol
excess. In 1 study of adrenal tumor patients, an ML model analyzed
17 urinary steroid metabolites and correctly stratified patients by cor-
tisol secretion status and cardiometabolic risk, outperforming single
metabolite thresholds.* These examples underscore Al’s role in dis-
tilling high-dimensional assay data into clinically actionable insights.

Artificial Intelligence technologies are accelerating the evolution
of hormonal biosensor capabilities, with significant implications for
continuous monitoring applications. Novel wearable and point-of-
care analytical platforms now enable the real-time quantification of
hormones from non-invasive biological matrices, including saliva,
perspiration, and interstitial fluid. These advanced monitoring sys-
tems generate continuous data streams, necessitating sophisticated
computational approaches for signal processing and interpretation.
Machine learning algorithms play a crucial role in calibrating sensor
outputs, mitigating signal noise and temporal drift, and converting
raw electrochemical signals into clinically relevant hormonal metrics.
Contemporary research has yielded wearable cortisol monitoring
systems that utilize minimally invasive microneedle arrays or elec-
trochemical detection methodologies, capable of generating con-
tinuous profiles of adrenocortical hormones. Artificial Intelligence
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CONVENTIONAL METHODOLOGIES

1. Limited Temporal Resolution

+ Single timepoint measurements miss uliradian and circadian
variations (52% change needed for clinical significance®)

+ Episodic hormone secretion patierns obscured (e.g., cortisol
ili retion bursts®)

2. Analytical Reliability Constraints
» Immunoassay cross-reactivity with structurally similar
molecules (poor correlation with mass spectrometry™)

« Inter-laboratory and inter-method variability undermines

3. Inter-Individual Heterogeneity |

» Population-derived reference ranges have limited utility for
individuals (5-10 fold differences in healthy populations™)

» Physiological variations confound interpretation (e.q., TSH
diurnal variation of 40-50%1) |

4. Spurious Analytical Results

* Macromolecular complexes (e.g., macroprolactin) yield false
elevations (15-26% of hyperprolactinemia cases™)

+ High-dose hook effect and biotin interference produce
i ini fic. assays's **

5. Isolated System Assessment

+ Single-hormone axis evaluation misses multi-system
interactions (e.g., PCOS metabolic-reproductive interplay*°)

» Delayed diagnosis and suboptimal therapy due to
i retation

Paradigm
Shift
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AI-AUGMENTED STRATEGIES

1. Continuous Temporal Monitoring

= Wearable biosensors with Al capture dynamic hormone profiles|
(e.g., microdialysis sampling at 10-20 min intervals®)

« ML algorithms predict hormonal trajectories based on limited

2. Al-Enhanced Quality Control Systems

« Machine learning algorithms for real-time detection of assay
drift and analytical error (AI-PBRTQC methodology**)

« Automated cross-platform validation between immunoassay
L_and mass spectrometry data (reduced false results>) |

3. Personalized Reference Calibration

* Deep leamning models establish individual-specific baselines
and circadian profiles across multiple hormones®,*

« Neural networks detect subtle deviations from personal
L_hormaone patterns hefore clinical manifestations™

4. Multi-Parameter Analysis Integration

= Machine learning pattern recognition identifies interference
signatures across multiple analytes™ =

« Al algorithms integrate mass spectrometry profiles with
ini i ic.accuracy™ *

5. Multi-Axis Clinical Integration

= "Digital twin" models simulate complete endocrine networks
for personalized intervention planning™

« Neural networks integrate multi-hormone signatures for
i i 1 20 2= 3%

Superscript numbers correspond fo manuscnpt citations

Figure1 . Paradigm shift: from conventional limitations to artificial intelligence—enhanced hormone analysis.

calibration frameworks subsequently adjust for confounding physi-
ological variables, such as perspiration rate and cutaneous tempera-
ture, to ensure that measured values accurately reflect plasma cortisol
concentrations.’’#¢ Through enhanced signal processing capabili-
ties, Al substantially improves the analytical performance of these
biosensors, accelerating their transition to clinical implementation.
Furthermore, cloud-based analytical platforms enable the contextual
interpretation of continuous hormonal data, identifying, for exam-
ple, anomalous cortisol elevations during expected nadir periods,
which facilitates therapeutic adjustments in patients with adrenal
insufficiency. The integration of Al extends to laboratory automation
systems, where clinical facilities adopting MS platforms for compre-
hensive steroid profiling benefit from computational optimization
of analytical workflows, compensating for batch-related variability,
automating result validation, and algorithmically determining when
confirmatory testing methodologies are indicated. Current literature
suggests that future MS platforms incorporating Al decision support
systems “could be agame-changerin assay interferences” and analyt-
ical accuracy.” Artificial Intelligence further demonstrates significant
utility in multimodal data integration, synthesizing hormonal mea-
surements with diverse clinical parameters spanning symptomatol-
ogy, radiological findings, and genomic markers. Exemplifying this
approach, computational models now integrate continuous glucose
monitoring data with insulin measurements and physical activity
metrics to generate nuanced assessments of diurnal insulin resis-
tance patterns that transcend conventional static measurements. In

oncology applications, deep learning algorithms have demonstrated
the capacity to predict hormone receptor status directly from stan-
dard histopathological images, potentially obviating the require-
ments for additional immunohistochemical assays. Shamai et al.’
documented that neural network architectures accurately predicted
estrogen receptor positivity from breast neoplasm morphology on
hematoxylin and eosin-stained specimens, achieving concordance
with standard receptor immunoassays.

Handling Biological and Circadian Variability

Hormone levels are not static; they fluctuate in daily circadian cycles
(e.g., cortisol peaks in the early morning, while melatonin peaks at
night). They can pulsate or vary in response to menstrual or other
biological rhythms. This biological variability poses a challenge: a
“normal range” for a hormone like cortisol depends on the time of
day, and a value considered low at 8 AM might be perfectly normal at
midnight. Artificial intelligence is now enabling more sophisticated
modeling of temporal patterns, helping clinicians interpret hormone
levels in the context of an individual’s biological clock. One applica-
tion is using Al for circadian rhythm modeling—algorithms can ana-
lyze time-series hormone data to characterize an individual’s rhythm
and detect deviations. For example, Gubin et al*’ discuss how new
sensor technologies, which inform Al algorithms, enable person-
alized chronobiological analysis. Large repositories of continuous
wearable data can be integrated with Al to enhance the interpreta-
tion of circadian health, enabling personalized chronodiagnosis.®
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Conclusion

Al-driven analysis of hormone patterns is revolutionizing the field of
endocrinology by uncovering insights that were previously unattain-
able with conventional approaches. Across metabolic, reproductive,
thyroid, and adrenal systems, ML models have demonstrated the
ability to detect subtle temporal patterns and multivariate hormonal
signatures that correlate with disease states or treatment outcomes.
These tools are enabling earlier diagnosis, more precise prediction of
physiological events (such as ovulation or glycemic excursions), and
data-informed personalization of treatments (like optimized insulin
or LT4 dosing). The integration of multiple hormonal axes into unified
models represents the next leap forward, promising to handle the
complex interplay in systemic endocrine disorders and comorbidities.
However, translating these Al technologies into routine clinical prac-
tice will require overcoming certain challenges. Ensuring model inter-
pretability and transparency is crucial for clinician trust, especially
when Al recommendations affect medical decisions. Techniques like
explainable Al are beginning to shed light on which hormone features
drive an algorithm’s predictions. Additionally, robust validation in
diverse patient populations is necessary to prevent biases and main-
tain accuracy across various age groups, ethnicities, and clinical sce-
narios. Data privacy and integration hurdles must also be addressed,
as effective Al often relies on large-scale, longitudinal data that span
electronic health records and wearable sensors. Despite these chal-
lenges, the trajectory of current research suggests that Al will become
an invaluable adjunct to endocrinologists. By continuously learn-
ing from new data and refining its pattern recognition, Al can keep
improving diagnostic algorithms and predictive models. In doing so,
it has the potential to augment clinical decision-making, offering sec-
ond opinions on challenging diagnostic puzzles, monitoring patients
in real-time for dangerous hormonal fluctuations, and suggesting
optimal interventions tailored to each individual’s hormonal profile.
Ultimately, the synergy of endocrinology expertise with Al may usher
in an era of more proactive, precise, and personalized endocrine
healthcare, where hormone fluctuations are managed with a level of
insight and responsiveness that was once unimaginable.
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