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Artificial Intelligence in Hormone Analysis

Sreedhar et al.

The Integration of Artificial Intelligence in Hormone 
Analysis: Transforming Diagnostic Precision and 
Personalized Endocrine Care

ABSTRACT

Traditional hormone analysis methods are often limited by single-point measurements, assay vari-
ability, and biological fluctuations that reduce diagnostic precision. Artificial intelligence (AI) offers 
powerful tools to address these limitations by recognizing complex hormone patterns, predict-
ing physiological events, and guiding personalized treatment strategies. This review explores how 
AI enhances endocrine diagnostics across metabolic, reproductive, thyroid, and adrenal hormone 
domains. By integrating vast temporal datasets and interpreting subtle variations often missed by 
conventional methods, AI facilitates earlier detection of disorders such as diabetes, polycystic ovary 
syndrome (PCOS), thyroid dysfunction, and adrenal abnormalities. It also supports dose optimization 
and real-time monitoring. Artificial intelligence–driven tools are evolving to model multi-hormone 
systems, offering a holistic understanding of endocrine function and aiding clinical decision-making. 
The integration of AI into hormone analysis signifies a paradigm shift toward proactive, precise, and 
personalized endocrine care.
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Introduction

Hormones are critical biological messengers that orchestrate physiological processes, includ-
ing metabolism, growth, reproduction, and stress response. Precise hormone measurement 
and interpretation are essential for diagnosing endocrine disorders, monitoring treatment, 
and assessing overall systemic health. The growing prevalence of endocrine disorders has 
amplified the importance of hormonal analysis. Traditional methods often fail to capture 
the subtle variations and complex interactions that characterize these conditions.1,2 Artificial 
intelligence (AI) offers unprecedented opportunities to analyze sophisticated patterns with 
enhanced precision and reliability.3,4

Artificial intelligence technologies have revolutionized medical diagnostics through 
advanced pattern recognition in hormonal data. Machine learning (ML) algorithms, particu-
larly deep learning, excel at identifying subtle patterns within complex biological datasets. 
These systems process vast temporal data, integrate multiple parameters, and detect pat-
terns imperceptible to human observers. Recent advances enable sophisticated models to 
analyze continuous hormone monitoring, interpret feedback mechanisms, and predict hor-
monal dysregulation before clinical manifestation.

Despite AI’s transformative potential, existing studies remain fragmented across subdomains. 
This review consolidates advances in AI applications for hormone quantification and predictive 
analytics for endocrine dysfunction. It evaluates the clinical translatability of these technolo-
gies in endocrine care. By synthesizing interdisciplinary insights, the authors chart a roadmap 
for integrating AI into hormone analysis, advancing precision medicine tailored to individual 
patient profiles. This integration promises to overcome traditional diagnostic limitations, 
enabling more accurate diagnosis and personalized management of endocrine disorders.

Complications in Conventional Hormone Analysis and Pattern Interpretation

Methodological Limitations

Single-Point Measurements vs. Continuous Fluctuations: Conventional hormone analysis 
faces significant methodological limitations by relying on single-point measurements rather 
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than capturing the complex temporal dynamics of hormone 
secretion. This approach fails to account for natural variations that 
significantly impact interpretation, as demonstrated by Collier et al5 
who found that healthy men’s morning testosterone levels fluctuate 
approximately 19% between days, requiring a substantial 52% 
change between measurements to indicate clinical significance. 
Many hormones, including growth hormone (GH), are secreted in 
episodic pulses, meaning random sampling may coincidentally 
capture peaks or troughs, leading to potentially misleading results. 
Recent technological advances, exemplified by Bhake et  al.’s6 
wearable microdialysis device capable of sampling free cortisol every 
10-20 minutes over extended periods, have revealed consistent 
circadian patterns and stress-related spikes entirely missed by 
traditional testing methods, underscoring how richer temporal data 
collection provides more accurate hormone profiles and highlighting 
the critical need for continuous monitoring approaches in both 
research and clinical settings.6

Assay Variability and Analytical Errors: Hormone assays themselves 
introduce variability and inaccuracies. Immunoassay-based 
techniques, the workhorse of hormone testing, often suffer from 
limited specificity and calibration differences. Immunoassays may 
cross-react with structurally similar molecules or background 
proteins at low hormone concentrations, yielding erroneous results. 
For instance, Ohlsson et  al7 compared standard immunoassays to 
mass spectrometry (MS) for measuring estradiol in men and 
postmenopausal women. Immunoassays showed only moderate 
correlation with MS and were prone to interference. C-reactive 
protein levels correlated with estradiol readings by immunoassay but 
not by MS, suggesting that the immunoassay was detecting 
nonspecific signals. The authors concluded that many prior studies 
linking estradiol to clinical outcomes may need revaluation due to 
inaccuracies in immunoassays.7 Lack of assay standardization is a 
related issue: different laboratories and kit manufacturers use varying 
antibodies and reference calibrators. As a result, the same patient’s 

sample can yield different values across labs, and “normal ranges” are 
assay-dependent. A 2023 analysis highlighted divergent reference 
intervals between hormone assays, warning that such discrepancies 
could impact the management of endocrine disorders.8

Sample Handling and Stability: Certain hormones are chemically 
unstable in blood and can degrade or change before analysis. A 
prime example is adrenocorticotropic hormone (ACTH), a peptide 
prone to rapid proteolysis. Fraissinet et al9 demonstrated that ACTH 
levels drop markedly unless samples are kept chilled and promptly 
processed. In whole blood at room temperature, ACTH became 
unreliable after just 2 hours, whereas cooling at 4°C preserved 
stability for up to 8 hours.

The timing of sample collection is another critical factor. Because 
of circadian fluctuations, drawing at inconsistent times introduces 
noise. Thyroid-stimulating hormone (TSH) varies by up to 40-50% 
over a day in a given individual. If 1 sample is taken at 8 AM and the 
next in the afternoon, a difference in TSH might reflect normal circa-
dian decline rather than a true change in thyroid function.10

Physiological Noise and Biological Rhythms: The measurement of 
endocrine biomarkers presents significant challenges for clinical 
interpretation due to inherent biological variability. Cortisol 
exemplifies this complexity through its circadian rhythmicity, 
superimposed ultradian pulsatility, and acute responsiveness to 
psychological and physiological stressors. In healthy males, research 
demonstrates that the predominant source of variance in diurnal 
cortisol secretion derives from intra-individual fluctuations rather 
than consistent patterns.11 Compounding these temporal dynamics, 
substantial inter-individual variability further complicates hormone 
assessment, with baseline concentrations often differing by an order 
of magnitude among healthy subjects of comparable demographics. 
Epidemiological data reveal 5- to 10-fold differences in hormone 
levels within healthy age- and sex-matched populations, challenging 
the utility of standardized reference intervals. This heterogeneity 
renders population means particularly problematic for individual 
assessment, as noted in 1 investigation where “remarkably few 
individuals showed the average” hormonal response during 
standardized stress testing.12 The confluence of episodic secretion 
patterns, circadian oscillations, stimulus-dependent fluctuations, 
and pronounced inter-subject variability fundamentally constrains 
the diagnostic precision and reliability of isolated hormone 
measurements in clinical practice.

Diagnostic Challenges in Hormone Pattern Analysis

Inter-Individual Variation and Static Reference Ranges: The 
interpretation of hormonal measurements against conventional 
reference intervals poses significant diagnostic challenges due to 
inherent biological variability. Standard laboratory reference ranges, 
typically derived from population-based sampling, exhibit broad 
distributions that may inadequately reflect individual physiological 
states. This limitation stems from the concept of personalized 
homeostatic set points, wherein values within population-defined 
normal limits may represent pathological deviations for specific 
individuals. Collier et  al5 demonstrated this phenomenon using 
testosterone measurements, observing that reference intervals were 
“marginally useful” clinically—a 52% reduction in an individual’s 
testosterone concentration could still fall within the reference range, 
potentially obscuring clinically significant alterations. This 

MAIN POINTS
•	 Artificial intelligence addresses core challenges in hormone 

diagnostics, such as assay variability, circadian fluctuation, and 
inter-individual variability by modeling complex patterns and 
enabling continuous hormone monitoring.

•	 Artificial intelligence improves the accuracy of diagnosing 
endocrine disorders, including diabetes, PCOS, thyroid dysfunc-
tion, and Cushing’s syndrome, by analyzing multivariate data 
and temporal hormone fluctuations.

•	 Artificial intelligence supports individualized therapy, such as 
levothyroxine and insulin dosing, through predictive model-
ing and decision-tree algorithms based on dynamic hormone 
profiles.

•	 Integration of artificial intelligence with biosensors and wear-
ables enables real-time hormone tracking and prediction of 
physiological states like ovulation or stress responses, enhanc-
ing preventive care.

•	 Artificial intelligence is advancing beyond single-axis analysis 
to multi-system integration, facilitating the development of 
“digital twins” that simulate comprehensive endocrine function 
and guide holistic management strategies.
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observation exemplifies the low index of individuality characteristic 
of many endocrine parameters, where intra-individual variance is 
proportionally small compared to inter-individual variance, 
diminishing the diagnostic utility of population-derived reference 
intervals for monitoring individual patients. Physiological life stages 
and comorbid conditions further complicate the interpretation of 
hormonal measurements. For instance, elevated insulin-like growth 
factor 1 (IGF-1) concentrations may suggest acromegaly, yet IGF-1 
exhibits physiologically increased levels during puberty and 
pregnancy, while demonstrating suppression in states of malnutrition 
or uncontrolled diabetes mellitus.10

False Positives and Negatives in Lab Results: Endocrine diagnostics 
are significantly compromised by false-positive and false-negative 
results, with analytical interferences representing the predominant 
source of error. Macromolecular hormone complexes exemplify this 
phenomenon; these biologically inactive hormone aggregates 
produce spurious elevations in immunoassay measurements. 
Macroprolactin—a high-molecular-weight complex of prolactin 
bound to immunoglobulin G—constitutes a substantial fraction of 
total immunoreactive prolactin in certain individuals. Despite 
detection as “elevated prolactin” in standard immunoassays, 
macroprolactin lacks biological activity, resulting in patients without 
clinical manifestations of hyperprolactinemia. Epidemiological 
investigations have demonstrated that macroprolactin accounts for 
15-26% of cases of biochemical hyperprolactinemia, representing 
misclassification rather than pathological hypersecretion. When 
unrecognized, this interference leads to erroneous diagnosis of 
prolactinoma and subsequent unnecessary therapeutic 
interventions. Paradoxically, extremely elevated hormone 
concentrations may generate false-negative results through the 
“hook effect” phenomenon. In 2-site immunometric assays, excessive 
analyte concentrations can simultaneously saturate both capture 
and signal antibodies, preventing sandwich formation and yielding 
paradoxically low measurements. Haddad et  al13 documented this 
phenomenon in patients with prolactin-secreting macroadenomas, 
where serum prolactin concentrations exceeding 60 000 nanograms 
per milliliter saturated assay systems, producing deceptively normal 
results.13 Exogenous biotin supplementation—increasingly prevalent 
for purported dermatological benefits—represents an emerging 
analytical interference. High-dose biotin disrupts the biotin-
streptavidin interaction, which is fundamental to many immunoassay 
platforms. Consequently, thyroid function tests in biotin-consuming 
individuals may present a biochemical pattern mimicking 
hyperthyroidism (artificially suppressed TSH and elevated thyroxine) 
despite clinical euthyroidism.14

Clinical Implications for Patient Management: The clinical 
implications of hormonal assay limitations extend beyond laboratory 
concerns to directly impact patient management and outcomes. 
Diagnostic uncertainty resulting from analytical inaccuracies may 
precipitate either delayed identification of endocrinopathies or 
erroneous diagnoses, consequently leading to inappropriate 
therapeutic interventions. For example, patients may be 
inappropriately committed to lifelong levothyroxine (LT4) 
supplementation based on falsely elevated TSH measurements or 
subjected to unnecessary pharmacological therapeutic intervention 
following misinterpretation of macroprolactinemia as a prolactin-
secreting pituitary adenoma. Conversely, individuals with true 

adrenal insufficiency may be inappropriately reassured by 
indeterminate cortisol measurements, subsequently encountering 
potentially life-threatening adrenal crises. These analytical limitations 
similarly compromise therapeutic monitoring; significant day-to-day 
variations in TSH concentrations challenge optimal titration of 
hormone replacement therapies in hypothyroidism. In the context of 
endocrine neoplasia, the inherent variability in hormonal tumor 
markers (including cortisol and catecholamines) necessitates 
longitudinal trend analysis rather than isolated measurements for 
accurate clinical decision-making.10

In response to these constraints, AI applications have emerged as 
innovative solutions for enhancing the reliability and precision of 
hormonal analysis. These computational methodologies employ 
sophisticated algorithms to interpret complex patterns within multi-
variate datasets that might otherwise be overlooked by conventional 
analysis. Artificial intelligence platforms demonstrate the capacity 
for more accurate prediction of dynamic hormone concentrations, 
identifying subtle pattern abnormalities beyond human analytical 
capabilities, and providing decision support for individualized treat-
ment strategies. This integration of computational intelligence into 
endocrine diagnostics establishes a foundation for more precise, effi-
cient, and personalized patient management, effectively overcoming 
many of the traditional limitations of conventional hormonal testing 
methodologies.

Artificial Intelligence Technologies for Hormone Pattern Analysis

Artificial Intelligence in Metabolic Hormone Pattern Analysis: 
Artificial intelligence has made significant inroads into metabolic 
hormone analysis, particularly in recognizing patterns of insulin and 
glucose for the management of diabetes. Continuous glucose 
monitors generate high-frequency data that AI algorithms can 
analyze for trends beyond simple averages. For example, Chan et al15 
developed a ML framework to identify distinct patterns of blood 
glucose fluctuations from continuous monitoring in individuals with 
type 1 diabetes. The system extracted 6 recurrent glucose profiles 
using time-series clustering and identified that patients could be 
grouped into 4 phenotypic clusters, characterized by differing 
hemoglobin A1c levels and time-in-range outcomes.15 Similarly, AI 
has been applied to predictive modeling: a recent study used features 
of the glucose curve during oral glucose tolerance tests to predict 
underlying metabolic defects. By analyzing the shape of glucose 
response curves, a ML model could accurately distinguish individuals 
with predominant muscle insulin resistance, beta-cell dysfunction, or 
impaired incretin response (AUC 88-95%). These results surpass 
traditional indices and suggest that AI pattern analysis of glucose 
dynamics can unmask the heterogeneity of metabolic syndrome and 
type 2 diabetes subtypes.16

Beyond glucose and insulin, AI techniques are being explored for 
appetite-regulating hormones such as leptin and ghrelin, which play 
roles in obesity and metabolic syndrome. Machine learning can inte-
grate such hormonal cycles with clinical data to improve weight man-
agement strategies. In 1 study, researchers collected postprandial 
leptin and ghrelin dynamics along with other biomarkers in obese 
patients undergoing therapy. Using these features, they trained a pre-
dictive model for weight loss success on an appetite suppressant. The 
resulting model achieved about 80% accuracy in predicting 3-month 
weight reduction outcomes. Notably, it outperformed models relying 
solely on baseline metrics, such as body mass index, highlighting that 
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incorporating hormone pattern features added predictive power.17 
Such an approach could help clinicians identify which patients are 
likely to respond to a given diet or pharmacotherapy by recogniz-
ing hormonal pattern signatures of treatment responsiveness. The 
integration of these appetite-regulating hormones into predictive 
frameworks represents a paradigm shift in metabolic health moni-
toring. Ghrelin, which exhibits characteristic peaks before meals 
following habitual feeding patterns, and leptin, which interact with 
circadian-metabolic disruptions commonly observed in obesity,18-21 
are now being incorporated into sophisticated algorithms designed 
to forecast blood glucose trajectories and preempt dysglycemic epi-
sodes. This evolving field represents a convergence of endocrinology, 
computational biology, and personalized medicine, with AI-designed 
compounds already showing success in targeting multiple receptors 
involved in appetite and weight control, offering unprecedented 
opportunities for precision-based metabolic health interventions 
and personalized obesity management strategies.

Artificial Intelligence in Reproductive Hormone Pattern Analysis: 
Reproductive endocrinology has leveraged AI to analyze the cyclical 
patterns of hormones that regulate menstrual cycles, ovulation, and 
fertility. Menstrual cycle tracking apps and wearables generate 
longitudinal data, including cycle lengths, basal body temperature, 
and changes in heart rate, that reflect underlying hormonal rhythms. 
Machine learning models have been designed to classify cycle 
phases and predict ovulation by detecting subtle physiologic pattern 
shifts. For example, a recent computational study utilized a neural 
network to analyze resting heart rate patterns throughout the cycle 
and successfully identified the luteal phase, inferring ovulation 
timing under free-living conditions.22 This demonstrates how AI can 
non-invasively interpret signals downstream of hormones (e.g., 
estrogen’s effect on basal heart rate) to flag cycle irregularities or 
anovulatory cycles. On the biochemical side, AI is directly used on 
hormone measurements for ovulation prediction. Li et al23 developed 
ML models to pinpoint the day of ovulation in women undergoing 
fertility treatment by analyzing serial hormone levels. Using 
preovulatory trends in luteinizing hormone (LH), estradiol, and 
especially progesterone (P4), their algorithm predicted ovulation 
within a 24-hour window with up to 85% accuracy on a validation set. 
Interestingly, the model’s interpretability analysis revealed that a rise 
in serum P4 (≥0.65 ng/mL) was the strongest predictor of imminent 
ovulation, surpassing even LH.23 This insight, discovered through the 
ML evaluation of hormone patterns, could influence clinical practice 
by suggesting progesterone as a reliable marker for timing 
interventions (like insemination or egg retrieval) when LH is 
equivocal. Artificial intelligence-based ovulation forecasting tools 
are thus enhancing precision in fertility planning and assisted 
reproduction.

Artificial intelligence has also shown promise in detecting menstrual 
irregularities and reproductive disorders from hormone patterns. 
Polycystic ovary syndrome (PCOS), a common disorder character-
ized by chronic anovulation and hormonal imbalances, is an area of 
active AI research. Traditional diagnosis relies on a combination of 
clinical signs and static lab values; however, ML can better handle the 
complexity of PCOS presentation by integrating multiple hormonal 
and metabolic indicators. In a 2024 study, Zad et al24 applied several 
ML algorithms to electronic health record data of women at risk for 
PCOS. Their best model, a neural network combining patterns in fol-
licle-stimulating hormone, LH, estradiol, and sex hormone–binding 

globulin, achieved an area under the ROC curve of ~85% for predict-
ing PCOS before a clinical diagnosis was made. The model learned 
that certain hormone constellations (e.g., an elevated LH: FSH ratio 
alongside high androgen levels) strongly indicated PCOS, whereas 
features like prior pregnancy (gravidity) weighed against it.24 By rec-
ognizing these patterns, the AI could flag probable PCOS cases that 
clinicians had not yet diagnosed, facilitating earlier intervention. 
Beyond PCOS, researchers are exploring AI for other reproductive 
endocrinopathies. For instance, ML has been used to interpret subtle 
variations in menstrual cycle length and hormone profiles to pre-
dict conditions such as luteal phase defect, and even to differentiate 
types of ovulatory dysfunction. This augments clinicians’ ability to 
diagnose disorders like PCOS or amenorrhea and to personalize fer-
tility management (e.g., pinpointing the fertile window or optimizing 
hormone therapy in menstrual disorders).

Artificial Intelligence in Thyroid Hormone Pattern Analysis: Thyroid 
function is traditionally assessed through periodic blood tests (TSH, 
T3 [Triiodothyronine], T4 [Thyroxine]), but subtle patterns in these 
values over time or in relation to other biomarkers may go unnoticed. 
Artificial intelligence systems have been deployed to enhance the 
detection of thyroid dysfunction by mining routine laboratory data 
for patterns suggestive of hypo- or hyperthyroidism. For instance, Hu 
M et  al utilized electronic health record data from thousands of 
patients to train ML classifiers for thyroid disorders. Their best model 
distinguished hyperthyroid and hypothyroid patients from euthyroid 
controls with high accuracy (AUROC 93.8% for hyperthyroidism, 
90.9% for hypothyroidism).25 Using a wide array of laboratory tests, 
including serum creatinine, mean corpuscular volume (MCV), and 
total cholesterol for hyperthyroidism, as well as serum creatinine, 
lactate dehydrogenase (LDH), and total cholesterol for 
hypothyroidism, is highly relevant for clinical endocrinologists. 
Thyroid dysfunction significantly alters renal function, with serum 
creatinine levels reflecting these changes. In hypothyroid patients, 
treatment reduces serum creatinine and improves estimated 
glomerular filtration rate (eGFR), indicating renal recovery. 
Hyperthyroid patients show increased serum creatinine and reduced 
eGFR after treatment.26 In hypothyroidism, total cholesterol and LDL 
levels increase due to reduced clearance of low-density lipoprotein 
(LDL). High-density lipoprotein may remain normal or increase due 
to decreased CETP and hepatic lipase activity. In contrast, 
hyperthyroidism lowers total cholesterol, LDL, and apo B due to 
increased LDL receptor activity. High-density lipoprotein levels may 
decrease slightly in hyperthyroidism from enhanced lipid 
metabolism.27 In hyperthyroidism, a mild decrease in hemoglobin 
and MCV is common, even in the absence of iron deficiency or 
anemia. MCV typically rises after treatment, indicating that low MCV 
is a consistent feature of active hyperthyroidism. Excess thyroxine 
alone does not replicate this MCV change. Autoimmune markers, 
such as thyroid microsomal and parietal cell antibodies, are frequently 
present.28 The study found that serum LDH activity significantly 
increased in subclinical and clinical hypothyroidism (P ≤ .001) 
compared to euthyroid individuals. Despite elevated LDH in 
hypothyroidism, there was no significant correlation between LDH 
and T3, T4, or TSH levels. Lactate dehydrogenase alterations may 
reflect metabolic disturbances, but are not reliable markers of thyroid 
dysfunction.29 These correlations make clinical sense (e.g., 
hypothyroidism often raises cholesterol levels), and the AI effectively 
“learned” these relationships from the data. The authors concluded 
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that ML could serve as a screening tool, scanning routine lab results 
to catch undiagnosed thyroid disorders in primary care.

Another key application of AI in thyroidology is optimizing LT4 ther-
apy for patients with hypothyroidism. Achieving the correct LT4 dose 
after thyroidectomy or in chronic thyroiditis can be a trial-and-error 
process spanning months. Chen et al30 created a ML decision tree to 
recommend LT4 dose adjustments after thyroidectomy. The model 
was trained on dose titration data from 320 patients, incorporating 
inputs such as current dose, TSH level, and patient characteristics. In 
validation, the AI’s dose adjustment recommendation was within 1 
standard dose increment (12.5 µg) of the optimal adjustment in ~75% 
of cases. This accuracy was on par with that of experienced endocri-
nologists and notably better than that of inexperienced providers or 
simple weight-based formulas. Essentially, the algorithm can predict 
that a patient with a very high TSH and a specific body weight might 
require, for example, an additional 25 µg. In contrast, another patient 
with a mild TSH elevation might need only +12.5 µg.30 By following 
the decision tree’s guidance, clinicians unfamiliar with complex thy-
roid cases could reach euthyroidism faster, reducing the symptom-
atic period for patients. Artificial intelligence-driven dosing tools like 
this could be integrated into electronic prescribing systems, provid-
ing personalized dose suggestions after each lab test. While physi-
cians would remain in control, such tools offer a data-driven starting 
point for dose decisions. In the future, combining more data, such as 
genetic polymorphisms that affect thyroid hormone absorption or 
deiodination, could further refine AI dosing recommendations.

Artificial Intelligence in Pituitary and Adrenal Hormone Pattern 
Analysis: The pituitary and adrenal glands orchestrate hormone 
cascades with complex temporal patterns, and AI is being leveraged 
to model these for improved disease management. A prime example 
is Cushing’s syndrome, a condition of chronic cortisol excess often 
due to an ACTH-secreting pituitary tumor. Diagnosing Cushing’s 
syndrome can be challenging, requiring the integration of clinical 
features with multiple hormone tests (e.g., cortisol rhythms, 
dexamethasone suppression tests). Artificial intelligence–based 
decision systems are emerging to assist in this process. Recent work 
by Kalender et al explored various ML algorithms to classify Cushing’s 
syndrome using retrospective clinical and biochemical data. Their 
best model, a Random Forest classifier, distinguished patients with 
Cushing’s syndrome from those without it with ~92% accuracy 
(sensitivity of ~97%, specificity of ~87%). Moreover, the model could 
subclassify the type of Cushing’s (e.g., Cushing’s disease vs. ectopic 
ACTH vs. adrenal tumor) with high per-class precision by recognizing 
hormone pattern signatures associated with each subtype.31 The AI 
effectively learned these distinctions. Such a tool could alert 
endocrinologists when a patient’s constellation of lab results 
indicates Cushing’s syndrome, or even suggest the likely subtype, 
thereby expediting confirmatory testing and treatment. Addison’s 
disease (primary adrenal insufficiency), conversely, involves cortisol 
deficiency and can be life-threatening if missed. Although no large 
published human studies have yet been conducted, analogous ML 
models are being developed to screen for Addison’s disease by 
analyzing routine laboratory patterns (e.g., concurrent hyponatremia, 
hyperkalemia, and elevated ACTH levels). The vision is an AI system 
that can raise an alarm for possible Addison’s disease when a 
hospitalized patient’s labs and symptoms follow a pattern exhibited 
by past Addison’s cases, thus prompting a timely ACTH stimulation 

test. In veterinary medicine, such models already assist in identifying 
Addison’s in dogs, and translation to human medicine is anticipated 
as data accrues.32

AI has also begun to tackle GH secretion patterns in pediatric and 
adult populations. Diagnosing growth disorders, such as GH defi-
ciency, typically requires stimulation tests and serial sampling to 
observe the hormone’s dynamic response. Researchers have been 
testing AI models on alternative datasets to reduce reliance on these 
labour-intensive tests. One innovative approach analyzed transcrip-
tomic profiles (gene expression of dozens of genes) from a single 
blood draw and used ML to predict GH deficiency in children. In 
a pilot study, this method achieved an AUC of 0.97 in distinguish-
ing GH-deficient children from those with idiopathic short stature. 
Essentially, the AI identified a gene expression “signature” in periph-
eral blood that correlates with inadequate GH secretion, providing 
a proxy for the standard GH stimulation test. Artificial intelligence 
can interpret multi-sample GH testing data more effectively than 
manual methods. For example, in acromegaly (GH excess), AI is being 
explored to detect the disease earlier by recognizing subtle pattern 
deviations in IGF-1 trends and symptom evolution.33 Additionally, for 
patients on hydrocortisone or GH replacement, AI could potentially 
optimize dosing schedules by modeling the circadian pattern of cor-
tisol or the desired pulsatility of GH and suggesting dose timing that 
mimics physiological rhythms. Although such advanced applications 
are still largely conceptual, early studies in Cushing’s syndrome and 
GH disorders show that AI can enhance the authors’ ability to deci-
pher pituitary and adrenal hormone profiles. By doing so, it enhances 
the detection of disorders such as Cushing’s syndrome, Addison’s dis-
ease, and GH deficiencies, and paves the way for more physiologic 
management of these conditions.

Multi-System Artificial Intelligence Integration in Hormone Pattern 
Analysis: A frontier of endocrine AI research is the integration of 
multiple hormonal systems into unified models. Many endocrine 
disorders have systemic impacts or overlapping features (e.g., PCOS 
involves reproductive hormones and metabolic insulin resistance; 
Cushing’s syndrome affects both adrenal and metabolic parameters). 
Artificial intelligence models that concurrently analyze patterns 
across endocrine axes aim to capture this complexity, thereby 
improving diagnostic accuracy and guiding holistic treatment 
strategies. One illustrative case is PCOS, which could be considered a 
multi-system disorder. The ML model for PCOS mentioned earlier 
combined ovarian hormone levels with metabolic indicators like 
obesity, rather than evaluating each in isolation.24 By doing so, it 
could more reliably detect the condition than single-factor criteria, 
since PCOS manifests as a constellation of interrelated patterns 
(androgen excess, irregular gonadotropin levels, insulin resistance). 
This kind of integrated approach is also extending to other scenarios. 
Researchers are experimenting with AI that takes in a full panel of 
hormone results (thyroid, adrenal, gonadal, pancreatic) and clinical 
features to produce differential diagnoses. For instance, in a patient 
with fatigue and weight changes, such a model might simultaneously 
consider thyroid function, cortisol pattern, and sex hormones to 
determine if it’s hypothyroidism, adrenal insufficiency, or perhaps 
perimenopause, with each diagnosis defined by a unique multi-
hormone signature. Early evidence suggests that multi-input models 
can improve classification in complex cases: a meta-analysis of ML 
studies for central precocious puberty (an endocrine condition 
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requiring both brain and ovarian hormone evaluation) found that 
models combining clinical data, laboratory hormone levels, and 
imaging data achieved a pooled accuracy with AUC ~0.90 in 
diagnosis.34 This underscores that integrating diverse data sources 
(hormonal and otherwise) gives a more complete picture and better 
performance than any single source alone. “Digital twin” for endocrine 
health: a composite AI simulation of a patient’s endocrine network, 
continuously updated with multi-hormone data, that can test how a 
change (such as a new medication or lifestyle change) might affect 
the entire hormonal balance. While still experimental, such models 
have been trialed in metabolic disease and have shown improved 
outcomes in tailoring treatments.35

Artificial Intelligence Solutions for Single-Point Measurement 
Limitations
AI offers solutions by enabling continuous monitoring, predictive 
modeling, and real-time analytics that transcend static snapshots. 
For example, wearable biosensors paired with AI can now continu-
ously track hormone-related biomarkers, providing richer datasets 
than those obtained through periodic blood draws. In the diabetes 
domain, continuous glucose monitors linked with AI-driven insulin 
pumps (a “closed-loop” system) demonstrate the power of real-time 
data integration. These systems significantly improve glycemic con-
trol compared to intermittent fingersticks.36 Analogously, emerging 
AI-enhanced wearables for stress and sleep hormones (like cortisol 
and melatonin) allow noninvasive continuous hormone monitoring, 
offering real-time insights beyond what a single lab cortisol level can 
show.37

This study demonstrated that by inputting a patient’s age, cycle day, 
and a couple of hormone readings, an AI algorithm could pinpoint 
the person’s position in the menstrual cycle with 95% confidence.38

Similarly, an innovative pilot study in dancers demonstrated that AI 
modeling of menstrual hormone variation, using only 2 blood samples 
per cycle, provided a “dynamic and comprehensive picture” of each 
dancer’s hormone network and detected subtle hormonal disrup-
tions well before traditional symptoms or cycle changes appeared.39 
For instance, AI-driven platforms have been utilized to personal-
ize hormone therapy dosing in real-time. One study reported an AI 
algorithm that adjusted menopausal hormone replacement dosages 
based on continuous symptom and biomarker tracking, resulting in 
improved efficacy and patient satisfaction.40

Reducing Assay Variability Through Artificial Intelligence
Another challenge in hormone analysis is assay variability, where 
results can differ due to changes in reagent lot, calibration drift, 
operator technique, or instrument error. Such variability under-
mines the trustworthiness of serial hormone measurements. 
Artificial intelligence-based calibration and quality control tools 
are now helping to stabilize this inconsistency. For example, labo-
ratories are implementing AI-driven quality control systems that 
continuously learn from patient data to detect analytical errors 
or drifts in real-time. In a 2024 study, Dong et  al41 introduced an 
AI-powered patient-based real-time quality control (AI-PBRTQC) for 
laboratory assays, including hormones such as thyroxine and anti-
Müllerian hormone, and found it to be more efficient in identifying 
quality risks than traditional quality control methods. This type of 
intelligent QC can promptly identify an assay calibration issue or 
reagent degradation, prompting corrective action before patients 
are affected. The AI-PBRTQC approach maintained high sensitivity 

while minimizing false alarms, indicating a robust performance in 
stabilizing assay outputs.41 Figure 1).

AI algorithms are also being applied to calibrate assays and miti-
gate interference. For instance, an AI-based “delta check” method 
developed by Zhou et al.42 used deep learning to compare current 
and prior results, effectively catching specimen mix-ups that conven-
tional delta checks missed.43 Additionally, AI can integrate data from 
multiple assays to cross-verify hormone levels. By combining outputs 
from different platforms (e.g., an immunoassay and a MS result for 
the same sample), ML models can identify outliers or apply bias cor-
rections, thus harmonizing measurements across methods. In sum-
mary, AI-based calibration models and real-time QC mechanisms 
are reducing assay variability by detecting errors early, adjusting for 
shifts, and ensuring that hormone measurements remain accurate 
and comparable over time.41,43 These improvements enhance the reli-
ability of hormone tests, which is crucial for longitudinal monitoring 
and nuanced dosing decisions in clinical practice.

Integrating Artificial Intelligence with Advanced Assay 
Technologies
Mass spectrometry can simultaneously quantify multiple hormones 
and metabolites with high accuracy, but it yields complex datasets. 
Machine learning is increasingly used to interpret MS-based profiles 
and extract clinically useful information. In thyroid disease research, 
Che et al44 showed that combining MS-based multi-omics (proteomic 
and metabolomic data) with AI can reveal patterns not evident from 
single analytes. In their review, they note that ML algorithms, such 
as random forests and support vector machines, applied to large 
omics datasets enable more accurate classification of thyroid condi-
tions by integrating subtle biomarker combinations.44 This type of 
multi-omics integration enables an AI to weigh dozens of hormonal 
and metabolic markers simultaneously, rather than clinicians inter-
preting each hormone individually. The result is a more holistic and 
precise assessment, for instance, differentiating thyroid carcinoma 
from benign nodules by a composite “fingerprint” of hormone levels 
and protein markers. Similarly, in adrenal endocrinology, research-
ers have used ML on steroid hormone panels (measured by liquid 
chromatography–MS) to improve the detection of subclinical cortisol 
excess. In 1 study of adrenal tumor patients, an ML model analyzed 
17 urinary steroid metabolites and correctly stratified patients by cor-
tisol secretion status and cardiometabolic risk, outperforming single 
metabolite thresholds.45 These examples underscore AI’s role in dis-
tilling high-dimensional assay data into clinically actionable insights.

Artificial Intelligence technologies are accelerating the evolution 
of hormonal biosensor capabilities, with significant implications for 
continuous monitoring applications. Novel wearable and point-of-
care analytical platforms now enable the real-time quantification of 
hormones from non-invasive biological matrices, including saliva, 
perspiration, and interstitial fluid. These advanced monitoring sys-
tems generate continuous data streams, necessitating sophisticated 
computational approaches for signal processing and interpretation. 
Machine learning algorithms play a crucial role in calibrating sensor 
outputs, mitigating signal noise and temporal drift, and converting 
raw electrochemical signals into clinically relevant hormonal metrics. 
Contemporary research has yielded wearable cortisol monitoring 
systems that utilize minimally invasive microneedle arrays or elec-
trochemical detection methodologies, capable of generating con-
tinuous profiles of adrenocortical hormones. Artificial Intelligence 
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calibration frameworks subsequently adjust for confounding physi-
ological variables, such as perspiration rate and cutaneous tempera-
ture, to ensure that measured values accurately reflect plasma cortisol 
concentrations.37,46 Through enhanced signal processing capabili-
ties, AI substantially improves the analytical performance of these 
biosensors, accelerating their transition to clinical implementation. 
Furthermore, cloud-based analytical platforms enable the contextual 
interpretation of continuous hormonal data, identifying, for exam-
ple, anomalous cortisol elevations during expected nadir periods, 
which facilitates therapeutic adjustments in patients with adrenal 
insufficiency. The integration of AI extends to laboratory automation 
systems, where clinical facilities adopting MS platforms for compre-
hensive steroid profiling benefit from computational optimization 
of analytical workflows, compensating for batch-related variability, 
automating result validation, and algorithmically determining when 
confirmatory testing methodologies are indicated. Current literature 
suggests that future MS platforms incorporating AI decision support 
systems “could be a game-changer in assay interferences” and analyt-
ical accuracy.43 Artificial Intelligence further demonstrates significant 
utility in multimodal data integration, synthesizing hormonal mea-
surements with diverse clinical parameters spanning symptomatol-
ogy, radiological findings, and genomic markers. Exemplifying this 
approach, computational models now integrate continuous glucose 
monitoring data with insulin measurements and physical activity 
metrics to generate nuanced assessments of diurnal insulin resis-
tance patterns that transcend conventional static measurements. In 

oncology applications, deep learning algorithms have demonstrated 
the capacity to predict hormone receptor status directly from stan-
dard histopathological images, potentially obviating the require-
ments for additional immunohistochemical assays. Shamai et  al.47 
documented that neural network architectures accurately predicted 
estrogen receptor positivity from breast neoplasm morphology on 
hematoxylin and eosin-stained specimens, achieving concordance 
with standard receptor immunoassays.

Handling Biological and Circadian Variability
Hormone levels are not static; they fluctuate in daily circadian cycles 
(e.g., cortisol peaks in the early morning, while melatonin peaks at 
night). They can pulsate or vary in response to menstrual or other 
biological rhythms. This biological variability poses a challenge: a 
“normal range” for a hormone like cortisol depends on the time of 
day, and a value considered low at 8 AM might be perfectly normal at 
midnight. Artificial intelligence is now enabling more sophisticated 
modeling of temporal patterns, helping clinicians interpret hormone 
levels in the context of an individual’s biological clock. One applica-
tion is using AI for circadian rhythm modeling—algorithms can ana-
lyze time-series hormone data to characterize an individual’s rhythm 
and detect deviations. For example, Gubin et al37 discuss how new 
sensor technologies, which inform AI algorithms, enable person-
alized chronobiological analysis. Large repositories of continuous 
wearable data can be integrated with AI to enhance the interpreta-
tion of circadian health, enabling personalized chronodiagnosis.38

Figure 1  . Paradigm shift: from conventional limitations to artificial intelligence–enhanced hormone analysis.
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Conclusion

AI-driven analysis of hormone patterns is revolutionizing the field of 
endocrinology by uncovering insights that were previously unattain-
able with conventional approaches. Across metabolic, reproductive, 
thyroid, and adrenal systems, ML models have demonstrated the 
ability to detect subtle temporal patterns and multivariate hormonal 
signatures that correlate with disease states or treatment outcomes. 
These tools are enabling earlier diagnosis, more precise prediction of 
physiological events (such as ovulation or glycemic excursions), and 
data-informed personalization of treatments (like optimized insulin 
or LT4 dosing). The integration of multiple hormonal axes into unified 
models represents the next leap forward, promising to handle the 
complex interplay in systemic endocrine disorders and comorbidities. 
However, translating these AI technologies into routine clinical prac-
tice will require overcoming certain challenges. Ensuring model inter-
pretability and transparency is crucial for clinician trust, especially 
when AI recommendations affect medical decisions. Techniques like 
explainable AI are beginning to shed light on which hormone features 
drive an algorithm’s predictions. Additionally, robust validation in 
diverse patient populations is necessary to prevent biases and main-
tain accuracy across various age groups, ethnicities, and clinical sce-
narios. Data privacy and integration hurdles must also be addressed, 
as effective AI often relies on large-scale, longitudinal data that span 
electronic health records and wearable sensors. Despite these chal-
lenges, the trajectory of current research suggests that AI will become 
an invaluable adjunct to endocrinologists. By continuously learn-
ing from new data and refining its pattern recognition, AI can keep 
improving diagnostic algorithms and predictive models. In doing so, 
it has the potential to augment clinical decision-making, offering sec-
ond opinions on challenging diagnostic puzzles, monitoring patients 
in real-time for dangerous hormonal fluctuations, and suggesting 
optimal interventions tailored to each individual’s hormonal profile. 
Ultimately, the synergy of endocrinology expertise with AI may usher 
in an era of more proactive, precise, and personalized endocrine 
healthcare, where hormone fluctuations are managed with a level of 
insight and responsiveness that was once unimaginable.
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